Comparative Performance In Hard Turning Of AISI 1015 Steel With Carbide Insert Using Orthogonal Array Design And Grey Relational Analysis Under Spray Impingement Cooling And Dry Environment: A Case Study
نویسندگان
چکیده
This study investigates the effects of cutting parameters on surface roughness (Raμm ), cutting temperature (T0C) at the chip tool interface and the material removal rate (MRR mm3/min) during hard machining of AISI 1015 (43 HRC) steel using carbide insert under dry and spray impingement cooling environment. A combined technique using orthogonal array and analysis of variance (ANOVA) was employed to investigate the contribution of spindle speed, feed rate, depth of cut and air pressure on responses. Utilization of IR camera is been effective to calculate the temperature at the interface of workpiece and the tool. It is observed that with spray impingement cooling, cutting performance improves compared to dry cutting. The predicted multi response optimization setting (N3-f1-d1-P2) ensures minimization of surface roughness, cutting temperature and maximization of material removal rate. Finally optimal result was validated by confirmatory test and the improvement in grey relational grade was found to be 0.288. Comparative Performance In Hard Turning Of AISI 1015 Steel With Carbide Insert Using Orthogonal Array Design And Grey Relational Analysis Under Spray Impingement Cooling And Dry Environment: A Case Study
منابع مشابه
Surface Roughness, Machining Force and FlankWear in Turning of Hardened AISI 4340 Steel with Coated Carbide Insert: Cutting Parameters Effects
The current experimental study is to investigate the effects of process parameters (cutting speed, feed rate and depth of cut) on performance characteristics (surface roughness, machining force and flank wear) in hard turning of AISI 4340 steel with multilayer CVD (TiN/TiCN/Al2O3) coated carbide insert. Combined effects of cutting parameter (v, f, d) on performance outputs (Ra, Fm and VB) ar...
متن کاملOptimization of Process Parameters in Turning of AISI 8620 Steel Using Taguchi and Grey Taguchi Analysis
The aim of this research is to investigate the optimization of cutting parameters (cutting speed, feed rate and depth of cut) for surface roughness and metal removal rate in turning of AISI 8620 steel using coated carbide insert. Experiments have been carried out based on Taguchi L9 standard orthogonal array design with three process parameters namely cutting speed, feed rate and depth of cut f...
متن کاملMachinability Improvement of 17-4PH Stainless Steel by Cryogenic Cooling
17-4PH stainless steel is a martensitic precipitation hardening stainless steel that provides an outstanding combination of high strength, good corrosion resistance, good mechanical properties, good toughness in both base metal and welds, and short time, low-temperature heat treatments that minimize warpage and scaling. This valuable alloy is widely used in the aerospace, nuclear, chemical, pet...
متن کاملOptimization of Surface Roughness in Hard Turning of AISI 4340 Steel using Coated Carbide Inserts
The use of multilayer coated carbide tool in hard turning has several advantages over grinding process such as; reduction of processing costs, increased productivity, short cycle time, compatible surface roughness and less enviornment problems without the use of cutting fluid. In the present study, an attempt has been made to evaluate the performance of multilayer coated carbide inserts during ...
متن کاملExperimental Investigation of surface roughness in dry turning of AISI 4340 alloy steel using PVD- and CVD- coated carbide inserts
The performance of coated inserts was described using Response Surface Methodology (RSM) when turning AISI 4340 alloy steel using single layer PVD and triple layer CVD coated inserts. Cutting tests were performed under dry cutting conditions so as to reduce the effects of cooling agents on the environment. Surface roughness (Ra) was the main response variable investigated. The experimental plan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJMMME
دوره 4 شماره
صفحات -
تاریخ انتشار 2014